Translation from classical two-way automata to pebble two-way automata
نویسندگان
چکیده
We study the relation between the standard two-way automata and more powerful devices, namely, two-way finite automata with an additional “pebble” movable along the input tape. Similarly as in the case of the classical two-way machines, it is not known whether there exists a polynomial trade-off, in the number of states, between the nondeterministic and deterministic pebble two-way automata. However, we show that these two machine models are not independent: if there exists a polynomial trade-off for the classical two-way automata, then there must also exist a polynomial trade-off for the pebble two-way automata. Thus, we have an upward collapse (or a downward separation) from the classical two-way automata to more powerful pebble automata, still staying within the class of regular languages. The same upward collapse holds for complementation of nondeterministic twoway machines. These results are obtained by showing that each pebble machine can be, by using suitable inputs, simulated by a classical two-way automaton with a linear number of states (and vice versa), despite the existing exponential blow-up between the classical and pebble two-way machines.
منابع مشابه
Determinizing Two-way Alternating Pebble Automata for Data Languages
We prove that for every integer k ≥ 1, two-way alternating kpebble automata and one-way deterministic k-pebble automata for data languages have the same recognition power.
متن کاملTwo-way Automata and Regular Languages of Overlapping Tiles
In this paper, we show how the study of two-way automata on words may relevantly be extended to the study of two-way automata on one-dimensional overlapping tiles that generalize finite words. Indeed, over tiles, languages recognizable by finite two-way automata (resp. multi-pebble automata) coincide with languages definable by Kleene’s (resp. Kleene’s extended) regular expressions. As an immed...
متن کاملA Pebble Weighted Automata and Weighted Logics
We introduce new classes of weighted automata on words. Equipped with pebbles, they go beyond the class of recognizable formal power series: they capture weighted first-order logic enriched with a quantitative version of transitive closure. In contrast to previous work, this calculus allows for unrestricted use of existential and universal quantifications over positions of the input word. We ac...
متن کاملTowards Regular Languages over Infinite Alphabets
Motivated by formal models recently proposed in the context of XML, we study automata and logics on strings over infinite alphabets. These are conservative extensions of classical automata and logics defining the regular languages on finite alphabets. Specifically, we consider register and pebble automata, and extensions of first-order logic and monadic second-order logic. For each type of auto...
متن کاملTwo-Way Automata in Coq
We formally verify translations from two-way automata to one-way automata based on results from the literature. Following Vardi, we obtain a simple reduction from nondeterministic two-way automata to one-way automata that leads to a doubly-exponential increase in the number of states. By adapting the work of Shepherdson and Vardi, we obtain a singlyexponential translation from nondeterministic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- RAIRO - Theor. Inf. and Applic.
دوره 44 شماره
صفحات -
تاریخ انتشار 2010